Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

V. K. Ganesh, ${ }^{\text {a }}$ M. Yogavel, ${ }^{\text {a }}$ D. Velmurugan, ${ }^{\text {a }}$ S. Shanmuga Sundara Raj, ${ }^{\text {b }}$ H.-K. Fun, ${ }^{\text {c }}$ S. Kannadasan ${ }^{\mathrm{d}}$ and P. C. Srinivasan ${ }^{\text {d }}$

${ }^{\text {a }}$ Department of Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, ${ }^{\text {b }}$ B3121 Medical Centre North, Department of Medicine-Nephrology, Nashville, USA, ${ }^{\text {c } X \text {-ray Crystallographic Unit, }}$ Department of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ${ }^{\text {d }}$ Department of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India

Correspondence e-mail: d velu@yahoo.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.043$
$w R$ factor $=0.121$
Data-to-parameter ratio $=18.5$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

3-[2-(2,4-Dichlorophenyl)vinyl]-2-methyl-1-phenylsulfonyl-1H-indole

The title compound, $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{Cl}_{2} \mathrm{NO}_{2} \mathrm{~S}$, crystallizes with $\mathrm{Z}^{\prime}=2$ in space group $P \overline{1}$. The dihedral angle between the indole moiety and the aromatic rings of the phenylsulfonyl and dichlorophenyl groups are $76.2(1)$ and $7.6(1)^{\circ}$ in molecule A, and 75.6 (1) and $11.6(1)^{\circ}$ in molecule B. The dihedral angle between the two aromatic rings is 79.7 (1) ${ }^{\circ}$ in molecule A and $81.6(1)^{\circ}$ in molecule B. The molecular structure and molecular packing in the crystal are stabilized by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ weak interactions.

Comment

The indole ring system is present in a number of natural products, many of which are found to possess antibacterial (Okabe \& Adachi, 1998), antitumour (Schollmeyer et al., 1995), antidepressant (Grinev et al., 1984), antimicrobial (ElSayed et al., 1986; Gadaginamath \& Patil, 1999) and antiinflammatory (Rodriguez et al., 1985) activities. Sivaraman et al. (1996) have studied the interaction of phenylsulfonyl indoles with calf-thymus DNA, by spectroscopic methods. Indoles have been proved to display high aldose reductose inhibitory activity (Rajeswaran et al., 1999). The structure determination of the title compound, (I), was undertaken as part of our studies on indole derivatives.

(I)

The asymmetric unit contains two molecules, A and B; the corresponding bond lengths and angles of these two molecules agree with each other and no conformational changes are observed. Bond lengths and angles in the indole moiety are comparable with those observed in related N-phenylsulfonyl indole derivatives (Sankaranarayanan et al., 2000; Sankaranarayanan, Yogavel, Velmurugan, Sekar, Babu et al., 2003; Sankaranarayanan, Yogavel, Velmurugan, Sekar, Srinivasan et al., 2003; SethuSankar et al., 2002; Govindasamy et al., 1998). The lengthening of $\mathrm{C}-\mathrm{N}$ bonds in the indole moiety is due to the electron-withdrawing character of the phenylsulfonyl group. The $\mathrm{S} 1-\mathrm{N} 1$ and $\mathrm{S} 1-\mathrm{C} 10$ bond distances are compar-

Received 2 April 2003
Accepted 8 April 2003
Online 30 April 2003

Figure 1
The asymmetric unit of the title compound, showing 35% probability displacement ellipsoids and the atom-numbering scheme.
able with the respective mean values of 1.642 (24) and 1.758 (18) \AA (Allen et al., 1987). In both molecules, the angular disposition of the bonds about the S atoms shows significant deviation from that of a regular tetrahedron, with the largest deviation being in the $\mathrm{O}-\mathrm{S}-\mathrm{O}$ angles. As previously reported, the widening of the $\mathrm{O}-\mathrm{S}-\mathrm{O}$ angle is presumably the result of repulsive interaction between the $\mathrm{S}=\mathrm{O}$ bonds (Rodriguez et al. 1985; Beddoes et al., 1986; Govindasamy et al., 1998; Sankaranarayanan et al., 2000, 2001; SethuSankar et al., 2002).

In both molecules, the dichlorophenyl ring is nearly coplanar with the indole ring system, with a dihedral angle of $7.6(1)^{\circ}$ in molecule A and $11.6(1)^{\circ}$ in molecule B. The dihedral angle between the indole ring system and the sulfonyl-bound phenyl ring is $76.2(1)^{\circ}$ in molecule A and $75.6(1)^{\circ}$ in molecule B. The sulfonylphenyl and dichlorophenyl rings are nearly orthogonal [dihedral angles 79.7 (1) and $81.5(1)^{\circ}$]. Atom N1 deviates from the plane passing through C2, C5 and S1 by 0.186 (2) \AA in molecule A and 0.179 (2) \AA in molecule B, and the sum of the angles around N 1 is $355.4(1)^{\circ}$ in molecule A and $355.7(1)^{\circ}$ in molecule B. This slight pyramidalization is also observed in related indole derivatives (Sankaranarayanan et al., 2000; Sankaranarayanan, Yogavel, Velmurugan, Sekar, Babu et al., 2003; Sankaranarayanan, Yogavel, Velmurugan, Sekar, Srinivasan et al., 2003; SethuSankar et al., 2002).

Both the molecular and crystal structures are stabilized by weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions. In the molecular structure, the orientations of the indole and phenyl subtituents with respect to the sulfonyl group are influenced by $\mathrm{C} 6-\mathrm{H} 6 \cdots \mathrm{O} 1$ and $\mathrm{C} 15-\mathrm{H} 15 \cdots \mathrm{O} 2$ weak interactions (Table 2). In the crystal structure, the $\mathrm{C} 19 A-\mathrm{H} 19 A \cdots \mathrm{O} 2 B$ and $\mathrm{C} 19 B-$

Figure 2
A stereoview of the molecular packing in the title compound, showing two anti-parallel helices along the a direction. For clarity, H atoms not involved in hydrogen bonding have been omitted.
$\mathrm{H} 19 B \cdots \mathrm{O} 2 A(1+x, y, z)$ interactions link the molecules to form helices along the a direction (Fig. 2).

Experimental

To a suspension of $\mathrm{NaH}(0.15 \mathrm{~g}, 6 \mathrm{mmol})$ in dry tetrahydrofuran (THF, 20 ml) at room temperature was slowly added the $2,4-$ dichlorobenzyl phosphonium bromide (6 mmol) in dry THF (40 ml) under N_{2} and stirred for 1 h . A solution of 1-phenylsulfonyl-2-methylindole-3-carbaldehyde (1 equivalent, 6 mmol) in dry THF $(20 \mathrm{ml})$ was then added. Stirring was continued for another 2 h . The red-brown solution was poured over ice $(200 \mathrm{~g})$ containing saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution. Then it was extracted with dichloromethane and the organic extract was washed with water $(3 \times 25 \mathrm{ml})$, dried over MgSO_{4} and filtered. Removal of solvent and chromatographic separation on a silica-gel column by elution with hexane-ethyl acetate (9:1) afforded the title compound.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{23} \mathrm{H}_{17} \mathrm{Cl}_{2} \mathrm{NO}_{2} \mathrm{~S} \\
& M_{r}=442.34 \\
& \text { Triclinic, } P \overline{1} \\
& a=8.0083(1) \AA \\
& b=11.7242(2) \AA \\
& c=21.9150(4) \AA \\
& \alpha=86.474(1)^{\circ} \\
& \beta=89.831(1)^{\circ} \\
& \gamma=81.037(1)^{\circ} \\
& V=2028.60(6) \AA^{3}
\end{aligned}
$$

$Z=4$

$D_{x}=1.448 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 5639 reflections
$\theta=0.9-28.3^{\circ}$
$\mu=0.44 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Parallelepiped, yellow
$0.48 \times 0.42 \times 0.36 \mathrm{~mm}$

Data collection

Siemens SMART CCD area-

detector diffractometer
ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.815, T_{\text {max }}=0.857$
16575 measured reflections

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0553 P)^{2}\right. \\
& \quad+0.042 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.29 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.42 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\AA{ }^{\circ}\right)$.

$\mathrm{C} 11 A-\mathrm{C} 21 A$	$1.738(2)$	$\mathrm{C} 11 B-\mathrm{C} 21 B$	$1.739(2)$
$\mathrm{C} 2 A-\mathrm{C} 23 A$	$1.737(2)$	$\mathrm{Cl} 2 B-\mathrm{C} 23 B$	$1.738(2)$
$\mathrm{S} 1 A-\mathrm{O} 1 A$	$1.426(1)$	$\mathrm{S} 1 B-\mathrm{O} 2 B$	$1.428(1)$
$\mathrm{S} 1 A-\mathrm{O} 2 A$	$1.429(1)$	$\mathrm{S} 1 B-\mathrm{O} 1 B$	$1.429(1)$
$\mathrm{S} 1 A-\mathrm{N} 1 A$	$1.665(2)$	$\mathrm{S} 1 B-\mathrm{N} 1 B$	$1.668(2)$
$\mathrm{S} 1 A-\mathrm{C} 10 A$	$1.760(2)$	$\mathrm{S} 1 B-\mathrm{C} 10 B$	$1.761(2)$
$\mathrm{N} 1 A-\mathrm{C} 2 A$	$1.415(2)$	$\mathrm{N} 1 B-\mathrm{C} 2 B$	$1.419(2)$
$\mathrm{N} 1 A-\mathrm{C} 5 A$	$1.430(2)$	$\mathrm{N} 1 B-\mathrm{C} 5 B$	$1.424(2)$
$\mathrm{C} 3 A-\mathrm{C} 16 A$	$1.445(3)$	$\mathrm{C} 3 B-\mathrm{C} 16 B$	$1.444(3)$
$\mathrm{C} 16 A-\mathrm{C} 17 A$	$1.310(3)$	$\mathrm{C} 16 B-\mathrm{C} 117 B$	$1.314(3)$
$\mathrm{C} 17 A-\mathrm{C} 18 A$	$1.459(3)$	$\mathrm{C} 17 B-\mathrm{C} 18 B$	$1.460(3)$
$\mathrm{O} 1 A-\mathrm{S} 1 A-\mathrm{O} 2 A$	$119.03(8)$	$\mathrm{O} 2 B-\mathrm{S} 1 B-\mathrm{O} 1 B$	$118.9(1)$
$\mathrm{O} 1 A-\mathrm{S} 1 A-\mathrm{N} 1 A$	$107.11(8)$	$\mathrm{O} 2 B-\mathrm{S} 1 B-\mathrm{N} 1 B$	$107.5(1)$
$\mathrm{O} 2 A-\mathrm{S} 1 A-\mathrm{N} 1 A$	$107.58(8)$	$\mathrm{O} 1 B-\mathrm{S} 1 B-\mathrm{N} 1 B$	$107.1(1)$
$\mathrm{O} 1 A-\mathrm{S} 1 A-\mathrm{C} 10 A$	$109.81(9)$	$\mathrm{O} 2 B-\mathrm{S} 1 B-\mathrm{C} 10 B$	$108.3(1)$
$\mathrm{O} 2 A-\mathrm{S} 1 A-\mathrm{C} 10 A$	$108.00(8)$	$\mathrm{O} 1 B-\mathrm{S} 1 B-\mathrm{C} 10 B$	$109.8(1)$
$\mathrm{N} 1 A-\mathrm{S} 1 A-\mathrm{C} 10 A$	$104.33(8)$	$\mathrm{N} 1 B-\mathrm{S} 1 B-\mathrm{C} 10 B$	$104.3(1)$
$\mathrm{C} 2 A-\mathrm{N} 1 A-\mathrm{C} 5 A$	$107.8(1)$	$\mathrm{C} 2 B-\mathrm{N} 1 B-\mathrm{C} 5 B$	$107.9(1)$
$\mathrm{C} 2 A-\mathrm{N} 1 A-\mathrm{S} 1 A$	$122.8(1)$	$\mathrm{C} 2 B-\mathrm{N} 1 B-\mathrm{S} 1 B$	$122.8(1)$
$\mathrm{C} 5 A-\mathrm{N} 1 A-\mathrm{S} 1 A$	$124.8(1)$	$\mathrm{C} 5 B-\mathrm{N} 1 B-\mathrm{S} 1 B$	$125.0(1)$
$\mathrm{C} 3 A-\mathrm{C} 2 A-\mathrm{C} 24 A$	$128.0(2)$	$\mathrm{C} 3 B-\mathrm{C} 2 B-\mathrm{C} 24 B$	$127.9(2)$
$\mathrm{N} 1 A-\mathrm{C} 2 A-\mathrm{C} 24 A$	$122.2(2)$	$\mathrm{N} 1 B-\mathrm{C} 2 B-\mathrm{C} 24 B$	$122.5(2)$
$\mathrm{C} 2 A-\mathrm{C} 3 A-\mathrm{C} 16 A$	$123.8(2)$	$\mathrm{C} 2 B-\mathrm{C} 3 B-\mathrm{C} 16 B$	$124.4(2)$
$\mathrm{C} 16 A-\mathrm{C} 3 A-\mathrm{C} 4 A$	$128.8(2)$	$\mathrm{C} 16 B-\mathrm{C} 3 B-\mathrm{C} 4 B$	$128.4(2)$
$\mathrm{C} 17 A-\mathrm{C} 16 A-\mathrm{C} 3 A$	$128.9(2)$	$\mathrm{C} 17 B-\mathrm{C} 16 B-\mathrm{C} 3 B$	$127.8(2)$
$\mathrm{C} 16 A-\mathrm{C} 17 A-\mathrm{C} 18 A$	$126.9(2)$	$\mathrm{C} 16 B-\mathrm{C} 17 B-\mathrm{C} 18 B$	$127.7(2)$
$\mathrm{C} 10 A-\mathrm{S} 1 A-\mathrm{N} 1 A-\mathrm{C} 5 A$	$95.3(2)$	$\mathrm{C} 10 B-\mathrm{S} 1 B-\mathrm{N} 1 B-\mathrm{C} 5 B$	$95.0(2)$
$\mathrm{S} 1 A-\mathrm{N} 1 A-\mathrm{C} 5 A-\mathrm{C} 6 A$	$24.2(3)$	$\mathrm{S} 1 B-\mathrm{N} 1 B-\mathrm{C} 5 B-\mathrm{C} 6 B$	$23.1(3)$
$\mathrm{O} 2 A-\mathrm{S} 1 A-\mathrm{C} 10 A-\mathrm{C} 15 A$	$17.5(2)$	$\mathrm{O} 2 B-\mathrm{S} 1 B-\mathrm{C} 10 B-\mathrm{C} 15 B$	$15.7(2)$

Table 2
Short-contact geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 6 A-\mathrm{H} 6 A \cdots \mathrm{O} 1 A$	0.93	2.28	$2.866(3)$	120
$\mathrm{C} 6 B-\mathrm{H} 6 B \cdots \mathrm{O} 1 B$	0.93	2.29	$2.878(2)$	121
$\mathrm{C} 15 A-\mathrm{H} 15 A \cdots \mathrm{O} 2 A$	0.93	2.53	$2.901(3)$	104
$\mathrm{C} 15 B-\mathrm{H} 15 B \cdots \mathrm{O} 2 B$	0.93	2.54	$2.907(2)$	104
$\mathrm{C} 17 A-\mathrm{H} 17 A \cdots \mathrm{Cl} 2 A$	0.93	2.61	$3.052(2)$	110
$\mathrm{C} 17 B-\mathrm{H} 17 B \cdots \mathrm{Cl} 2 B$	0.93	2.60	$3.047(2)$	110
$\mathrm{C} 19 A-\mathrm{H} 19 A \cdots \mathrm{O} 2 B$	0.93	2.61	$3.513(2)$	163
$\mathrm{C} 19 B-\mathrm{H} 19 B \cdots \mathrm{O} 2 A^{\mathrm{i}}$	0.93	2.59	$3.487(2)$	163

Symmetry code: (i) $1+x, y, z$.
The H atoms were fixed geometrically and treated as riding atoms on the parent C atoms, with aromatic $\mathrm{C}-\mathrm{H}=0.93 \AA$ and methyl $\mathrm{C}-$ $\mathrm{H}=0.96 \AA$. Rotating group refinement was used for the methyl groups.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve
structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ZORTEP (Zsolnai, 1997) and PLATON (Spek, 1990); software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1995).

Financial support from the Department of Science and Technology (DST) and the University Grants Commission (UGC), Government of India, is gratefully acknowledged.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Beddoes, R. L., Dalton, L., Joule, J. A., Mills, O. S., Street, J. O. \& Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787-797.

El-Sayed, K., Barnhart, D. M., Ammon, H. L. \& Wassel, G. M. (1986). Acta Cryst. C42, 1383-1385.
Gadaginamath, G. S. \& Patil, S. A. (1999). Indian J. Chem. Sect. B, 38, 10701074.

Govindasamy, L., Velmurugan, D., Ravikumar, K. \& Mohanakrishnan, A. K. (1998). Acta Cryst. C54, 635-637.

Grinev, A. N., Shevdov, V. L., Krichevskii, E. S., Romanova, O. B., Altukkhova, L. B., Kurilo, G. N., Andreeva, N. I., Golovina, S. M. \& Mashkovskii, M. D. (1984). Khim. Farm. Zh. 18, 159-163.

Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Okabe, N. \& Adachi, Y. (1998). Acta Cryst. C54, 386-387.
Rajeswaran, W. G., Labroo, R. B. \& Cohen, L. A. (1999). J. Org. Chem. 64, 1369-1371.
Rodriguez, J. G., Temprano, F., Esteban-Calderon, C., Martinez-Ripoll, M. \& Garcia-Blanco, S. (1985). Tetrahedron, 41, 3813-3823.
Sankaranarayanan, R., Velmurugan, D., Shanmuga Sundara Raj, S., Fun, H.-K., Babu, G. \& Perumal, P. T. (2000). Acta Cryst. C56, 475-476.

Sankaranarayanan, R., Velmurugan, D., Shanmuga Sundara Raj, S., Fun, H.-K., Narasinga Rao, S., Kannadasan, S. \& Srinivasan, P. C. (2001). Acta Cryst. C57, 569-571.
Sankaranarayanan, R., Yogavel, M., Velmurugan, D., Sekar, K., Babu, G., Perumal, P. T., Shanmuga Sundara Raj, S. \& Fun, H.-K. (2003). Acta Cryst. E59, o49-o51.
Sankaranarayanan, R., Yogavel, M., Velmurugan, D., Sekar, K., Srinivasan, P. C., Shanmuga Sundara Raj, S. \& Fun, H.-K. (2003). Acta Cryst. E59, o99o101.
Schollmeyer, D., Fischer, G. \& Pindur, U. (1995). Acta Cryst. C51, 2572-2575.
SethuSankar, K., Suresh Babu, N., Velmurugan, D., Shanmuga Sundara Raj, S. \& Fun, H.-K. (2002). Acta Cryst. E58, o134-o136.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sivaraman, J., Subramanian, K., Velmurugan, D., Subramanian, E. \& Seetharaman, J. (1996). J. Mol. Struct. 385, 123-128.
Spek, A. L. (1990). Acta Cryst. A46, C-34.
Zsolnai, L. ZORTEP. (1997). University of Heidelberg, Germany.

